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Abstract
Streptomyces clavuligerus	is	a	Gram‐positive	bacterium	that	is	a	high	producer	of	sec‐
ondary	metabolites	with	industrial	applications.	The	production	of	antibiotics	such	as	
clavulanic	acid	or	cephamycin	has	been	extensively	studied	in	this	species;	neverthe‐
less,	 other	 aspects,	 such	 as	 evolution	 or	 ecology,	 have	 received	 less	 attention.	
Furthermore,	genes	that	arise	from	ancient	events	of	lateral	transfer	have	been	dem‐
onstrated	to	be	implicated	in	important	functions	of	host	species.	This	approximation	
discovered	relevant	genes	that	genomic	analyses	overlooked.	Thus,	we	studied	the	
impact	of	horizontal	gene	transfer	in	the	S. clavuligerus	genome.	To	perform	this	task,	
we	applied	whole‐genome	analysis	to	identify	a	laterally	transferred	sequence	from	
different	 domains.	 The	most	 relevant	 result	 was	 a	 putative	 antimicrobial	 peptide	
(AMP)	with	a	clear	origin	in	the	Hymenoptera	order	of	insects.	Next,	we	determined	
that	two	copies	of	these	genes	were	present	in	the	megaplasmid	pSCL4	but	absent	in	
the S. clavuligerus	ATCC	27064	chromosome.	Additionally,	we	found	that	these	se‐
quences	were	exclusive	to	the	ATCC	27064	strain	(and	so	were	not	present	in	any	
other	bacteria)	and	we	also	verified	the	expression	of	the	genes	using	RNAseq	data.	
Next,	we	used	several	AMP	predictors	to	validate	the	original	annotation	extracted	
from	Hymenoptera	sequences	and	explored	the	possibility	that	these	proteins	had	
post‐translational	 modifications	 using	 peptidase	 cleavage	 prediction.	 We	 suggest	
that	Hymenoptera	AMP‐like	proteins	of	S. clavuligerus	ATCC	27064	may	be	useful	for	
both	 species	 adaptation	 and	 as	 an	 antimicrobial	 molecule	 with	 industrial	
applications.
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1  | INTRODUCTION

Streptomyces	 is	a	genus	of	Gram‐positive	bacteria	characterized	by	
its	ability	 to	produce	antitumorals,	antihypertensives,	 immunosup‐
pressives	and,	above	all,	antibiotics	(Procópio,	da	Silva,	Martins,	de	
Azevedo,	&	de	Araújo,	2012).	Streptomyces clavuligerus	is	one	of	the	
most	important	species	within	the	genus	for	its	industrial	and	clinical	
applications.	This	microorganism	was	isolated	from	South	American	
soil	 samples	and	first	described	by	Higgens	and	Kastner	 (1971).	 In	
addition	to	other	members	of	the	Streptomyces	genus,	 it	exhibits	a	
very	complex	life	cycle	that	includes	multicellular,	spore‐bearing	hy‐
phae	and	semi‐dormant	spores	that	can	survive	for	long	periods	in	
the	soil	(Bobek,	Šmídová,	&	Čihák,	2017).	Moreover,	it	was	described	
that	S. clavuligerus	 produces	more	 than	20	 secondary	metabolites,	
including	 cephamycin	 C,	 holomycin,	 deacetoxycephalosporin	 C,	
penicillin	N,	and	tunicamycin,	among	others	(Table	1).

Streptomyces clavuligerus	ATCC	27064	contains	a	linear	chromo‐
some	(6.7	Mb),	three	linear	short	plasmids,	pSCL1	(10.5	kb),	pSCL2	
(149.4	kb),	and	pSCL3	(442.2	kb),	and	a	linear	megaplasmid	named	
pSCL4	(1.8	Mb)	(Song	et	al.,	2010).	These	plasmids	can	recombine	
with	the	chromosome,	enhancing	the	genetic	 interchange	of	sec‐
ondary	 metabolites	 (Medema	 et	 al.,	 2010).	 Interestingly,	 S. cat‐
tleya	NRRL	3841	 and	S. lipmannii	NRRL	3584	 are	 two	 species	 of	
the	genus	lacking	plasmids	(Netolitzky,	Wu,	Jensen,	&	Roy,	1995),	
and	even	 the	 strain	S. clavuligerus	F613‐1	has	a	different	number	
of	plasmids	(Cao	et	al.,	2016).	These	findings	suggest	that	plasmids	
could	provide	a	vehicle	for	genetic	interchange	by	horizontal	gene	
transfer	or	some	other	mechanism	in	this	species	and	even	in	the	
genus.

Horizontal	 gene	 transfer	 (HGT)	 corresponds	 to	 the	 transmis‐
sion	of	genetic	information	between	related	or	unrelated	organisms	
(Soucy,	Huang,	&	Gogarten,	 2015).	 This	mechanism	has	been	 rec‐
ognized	as	a	driving	evolutionary	force,	and	it	allows	for	gene	flow	
between	 distant	 evolutionary	 taxa	 (Boto,	 2010;	 Syvanen,	 2012).	
Therefore,	 HGT	 provides	 a	 new	 combination	 of	 sequences	 that	
usually	confer	selective	advantages	to	the	host,	and	 it	can	survive	
in	 the	“new”	genome	for	 long	periods	of	 time	 (Soucy	et	al.,	2015).	
Furthermore,	there	are	neutral	transferred	genes	that	do	not	confer	
an	 immediate	benefit	 but	 could	provide	material	 for	 variation	 and	
posterior	innovations	(Boto,	2010;	Syvanen,	2012).

Horizontal	gene	transfer	has	been	associated	with	prokaryotes,	
so	 their	 processes	 (conjugation,	 transformation,	 and	 transduction)	
are	well	understood.	However,	the	advent	of	sequencing	technolo‐
gies	has	uncovered	a	lot	of	evidence	to	show	that	this	process	also	
occurs	 in	eukaryotes	 (Dunning	Hotopp	et	al.,	2007;	Hirt,	Alsmark,	
&	 Embley,	 2015;	 Husnik	 et	 al.,	 2013;	 Sieber,	 Bromley,	 &	Dunning	
Hotopp,	 2017;	 Wu	 et	 al.,	 2013).	 Additionally,	 there	 are	 many	 in‐
stances	of	HGT	events	 in	eukaryotes,	 for	 instance	 the	 transfer	of	
genes	from	organelles,	such	as	chloroplasts	and	mitochondria,	to	the	
nucleus	(Kleine,	Maier,	&	Leister,	2009)	or	certain	reported	cases	of	
gene	 transmission	 that	 occurs	 in	 symbiotic	 relationships	 between	
prokaryotes	and	eukaryotes	(Acuña	et	al.,	2012;	Boto,	2014;	Dunning	
Hotopp,	2011;	Klasson	et	al.,	2014).	Examples	of	HGT	involving	ani‐
mals	are	less	detected,	presumably	because	the	germline	is	isolated	
from	 somatic	 cells,	meaning	 that	 contact	with	 foreign	DNA	 is	 re‐
duced	(Acuña	et	al.,	2012).	Despite	this	observation,	several	studies	
have	 reported	 animals	 as	 acceptors	 in	 this	 process.	Genomic	 sec‐
tions	of	 the	endosymbiotic	bacteria	Wolbachia pipientis	 have	been	
found	in	fruit	flies	and	wasps	(Conner	et	al.,	2017;	Dunning	Hotopp	
et	al.,	2007).	Anecdotally,	HGT	in	the	opposite	direction	was	also	ob‐
served	because	genomic	regions	of	the	mosquito	Aedes aegypti were 
detected	 in	W. pipientis.	 Data	 support	 the	 hypothesis	 that	 those	
genes	are	expressed	after	an	extended	evolutionary	period	because	
the	transfer,	with	functional	significance,	produces	evolutionary	in‐
novation	(Woolfit,	Iturbe‐Ormaetxe,	McGraw,	&	O'Neill,	2009).

Antimicrobial	peptides	(AMPs),	also	known	as	host	defense	pep‐
tides,	are	molecules	from	the	innate	immune	system	of	all	living	or‐
ganisms	that	protect	against	a	host	of	bacterial,	yeast,	 fungal,	and	
viral	 infections	 and	modulate	 immune	 responses	during	 infections	
(Zhang	&	Gallo,	2016).	The	best‐known	mode	of	action	of	these	mol‐
ecules	 involves	 the	membrane	 disruption	 of	 microbes	 by	 forming	
cavities	and	producing	cell	death	(Mahlapuu,	Håkansson,	Ringstad,	&	
Björn,	2016).	However,	mechanisms	affecting	intracellular	processes	
such	as	 cell	wall	 formation,	DNA,	RNA	and	protein	 synthesis,	 and	
protein	folding	have	also	been	described	(Cudic	&	Otvos,	2002;	Ho,	
Shah,	Chen,	&	Chen,	2016;	Le,	Fang,	&	Sekaran,	2017).	Moreover,	
certain	 AMPs	 have	 been	 reported	 as	 products	 of	 an	 HGT	 event.	
These	 cases	 include	 insect	 drosomycins	 and	nematode	 cremycins,	
which	 are	 probably	 acquired	 from	 plants	 (Zhu	 &	Gao,	 2014).	 The	
Alo‐3	sequence,	which	is	an	antifungal	peptide	found	in	many	plants	

Antibiotic Reference

β‐lactam Cephamycin	C Nabais	and	da	Fonseca	(1995)

β‐lactam Penicillin	N Nabais	and	da	Fonseca	(1995)

β‐lactam Clavulanic	acid Reading	and	Cole	(1977)

β‐lactam Cephalosporin Aharonowitz	and	Demain	(1978)

β‐lactam Deacetoxycephalosporin	C Nabais	and	da	Fonseca	(1995)

β‐lactam Ro	22‐5417 Pruess	and	Kellett	(1983)

β‐lactam O‐carbamoyl‐deacetylcephalosporin	C Nabais	and	da	Fonseca	(1995)

Non	β‐lactam Holomycin Li	and	Walsh	(2010)

Non	β‐lactam MM	19290	(related	to	tunicamycin) Kenig	and	Reading	(1979)

TA B L E  1  Antibiotics	produced	by	
Streptomyces clavuligerus
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and	 in	the	animal	kingdom	only	 in	 the	beetle	Acrocinus longimanus 
(Barbault	et	al.,	2003),	is	the	product	of	an	HGT	event	proposed	to	
explain	the	presence	of	this	gene	in	the	beetle	(Husnik	et	al.,	2013).	
Finally,	a	similar	case	was	suggested	for	thaumatins	from	nematodes,	
ticks,	and	insects,	which	probably	appeared	due	to	HGT	from	plants	
(Petre,	Major,	Rouhier,	&	Duplessis,	2011).

Antimicrobial	peptides	exhibit	certain	properties	that	give	them	
extraordinary	antimicrobial	activity	and,	in	some	cases,	even	antitu‐
moral	activity.	Their	shortness	in	length	(usually	<100	residues)	en‐
ables	the	easy	penetration	of	membranes.	In	the	case	of	antibacterial	
peptides,	a	net	positive	charge	ensures	the	electrostatic	interaction	
with	 negatively	 charged	 membranes	 as	 well	 as	 selectivity	 action	
against	prokaryotes	given	the	neutrality	of	eukaryote	membranes.	
Another	important	AMP	characteristic	is	the	amphiphilicity	(hydro‐
phobic	 and	 hydrophilic	 regions)	 that	 facilitates	 peptide	 entrance	
and	membrane	lysis	(Kang,	Kim,	Seo,	&	Park,	2017;	Mahlapuu	et	al.,	
2016;	Sun,	Xia,	Li,	Du,	&	Liang,	2014).	Thus,	due	to	the	effectiveness	
of	AMPs	 against	microbes,	 tumoral	 cells,	 and	 their	 immunomodu‐
latory	capacity,	 these	molecules	have	emerged	as	a	new	approach	
for	the	treatment	of	multidrug	resistant	bacteria,	cancer,	and	other	
diseases	(Mahlapuu	et	al.,	2016).

Antimicrobial	peptides	have	been	classified	based	on	their	bio‐
logical	activity	(antibacterial,	antiviral,	antifungal,	anticancer,	and	so	
on),	synthesis	machinery	(gene	encoded	and	nongene	encoded),	and	
different	properties,	such	as	peptide	charge,	length,	and	hydropho‐
bic	content,	chemical	modifications,	and	others	 (Wang,	2017).	The	
most	 extended	 classification	 is	 based	 on	 the	 secondary	 structure	
of	peptides,	which	consists	of	four	families	 (α‐helices,	β‐sheets,	αβ 
structures,	 and	non‐αβ	 structures)	 determined	by	 the	presence	or	
absence	of	α	 and	β	 secondary	 structures	 in	 the	 three‐dimensional	
structures	(Wang,	2017).	However,	most	AMPs	lack	a	3D	structure;	
thus,	a	classification	has	been	proposed	considering	the	connection	
mode	of	polypeptide	chains	(Wang,	2015).

Insects	are	one	of	the	largest	producers	of	AMPs	in	nature.	This	
is	explained	by	the	lack	of	an	adaptive	immune	system	in	these	an‐
imals,	meaning	that	they	need	to	produce	a	large	amount	of	AMPs	
from	 different	 types	 as	 a	 defense	 mechanism	 against	 pathogens	
(Bulet	&	Stöcklin,	 2005;	Mylonakis,	 Podsiadlowski,	Muhammed,	&	
Vilcinskas,	2016;	Yi,	Chowdhury,	Huang,	&	Yu,	2014).	They	release	
AMPs	from	the	fat	body	(analogous	to	a	vertebrate's	liver)	into	the	
hemolymph;	 thus,	 they	 can	 be	 distributed	 throughout	 the	 insect	
body,	although	other	epithelial	cells	and	hemocytes	in	certain	spe‐
cies	can	also	secrete	AMPs	(Bulet	&	Stöcklin,	2005).	Other	import‐
ant	sources	of	AMPs	are	 insect	venom	(e.g.,	melittins	and	apamins	
from	bees	and	mastoparans	from	wasps),	which	serves	as	a	defense	
against	pathogens	or	for	infecting	prey	(Moreno	&	Giralt,	2015),	and	
saliva	(e.g.,	drosomycin	from	flies	and	termicin	from	termites)	(Bulet	
&	Stöcklin,	2005;	Mylonakis	et	al.,	2016),	which	protects	eggs	from	
infections	(Józefiak	&	Engberg,	2017).

In	this	study,	we	report	and	characterize	a	putative	AMP	of	the	
S. clavuligerus	 strain	 ATCC	 27064	 transferred	 from	 Hymenoptera	
insects.	We	used	several	programs	to	predict	the	AMP	annotation.	
Additionally,	 public	 RNAseq	 data	 were	 used	 to	 corroborate	 the	

expression	 of	 the	 transferred	 gene,	 and	 we	 predicted	 the	 poten‐
tial	 cleavage	 sites	 of	 the	 protein	 in	 congruence	with	 a	 post‐trans‐
lational	scenario.	To	our	knowledge,	this	 is	the	first	time	that	such	
an	event	has	been	reported	and	provides	hints	of	the	complexity	of	
S. clavuligerus	and	its	capacity	to	produce	antimicrobial	compounds.

2  | METHODS

2.1 | Interdomain HGT candidate selection

A	 BLASTp	 search	 was	 performed	 (default	 values,	 e‐value	 thresh‐
old	of	1e‐5)	 using	 the	S. clavuligerus	 strain	ATCC	27064	proteome	
(Song	et	 al.,	 2010)	 as	 the	query	 and	UniProt	 (http://www.uniprot.
org)	as	the	database.	Next,	we	retrieved	the	taxonomy	of	each	blast	
hit	using	custom	python	scripts	and	a	MySQL	database.	The	S. cla‐
vuligerus	proteins	with	at	least	80%	of	BLAST	hits	with	a	taxonomic	
classification	different	to	bacteria	were	selected	as	HGT	candidates.	
The	80%	BLAST	hit	threshold	was	established	through	the	combi‐
nation	 of	 HGT	 candidates	 reported	 in	 Richards,	 Leonard,	 Soanes,	
and	Talbot	(2011)	and	Schmitt	and	Lumbsch	(2009),	allowing	for	the	
creation	of	guidelines	to	validate	the	HGT	candidates,	as	proposed	
in	Armijos‐Jaramillo,	Sukno,	and	Thon	(2015).

2.2 | Alignments and phylogenetic reconstruction

We	performed	global	alignment	with	the	BLAST	hit	candidates	ob‐
tained	in	the	previous	step,	using	MAFFT	7	(Katoh,	Misawa,	Kuma,	
&	Miyata,	2002)	option	auto	(offset	value	0.123,	gap	open	penalty	
1.53,	and	a	BLOSUM62	scoring	matrix).	Next,	we	 reconstructed	a	
phylogenetic	tree	using	PhyML	3.0	(Guindon	et	al.,	2010)	with	an	LG	
amino	acid	replacement	matrix,	100	nonparametric	bootstrap	rep‐
etitions,	and	all	other	options	as	default.	We	manually	analyzed	the	
tree	topology	to	establish	an	HGT	pattern	in	the	candidate's	trees.	
DNA	alignments	were	also	performed	with	MAFFT	7	using	the	same	
parameters	described	above.

2.3 | Contamination elimination and HGT region 
determination

To	 avoid	 obtaining	 HGT	 candidates	 due	 to	 contamination	 in	 the	
S. clavuligerus genome	project,	we	verified	 the	existence	of	 similar	
proteins	 in	 our	 HGT	 candidates	 through	 BLASTp	 searches	 in	 the	
PATRIC	 database	 (https://www.patricbrc.org/).	 The	 first	 searches	
were	performed	using	PATRIC's	representative	proteome	database	
(e‐value	threshold	10).	Next,	we	used	the	Streptomyces	database	and	
finally	the	S. clavuligerus	database,	which	has	available	the	complete	
proteome	of	the	two	strains	(ATCC	27064	from	three	different	pro‐
jects	and	F613‐1)	plus	several	plasmids.

To	verify	the	expression	of	HGT	candidates,	we	used	the	RNAseq	
data	available	in	GEO	(GSE104738,	bioproject	PRJNA413703).	These	
data	contain	deep	sequencing	of	S. clavuligerus	 (strains	F613‐1	and	
ATCC27064)	mRNA.	We	selected	the	genetic	 region	that	encodes	
one	of	the	HGT	protein	candidates,	and	then	used	this	as	a	template	

http://www.uniprot.org
http://www.uniprot.org
https://www.patricbrc.org/
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to	map	readings	from	RNAseq	experiments.	To	perform	the	mapping	
process,	we	used	Geneious	mapper	(iterations	of	up	to	5	times)	from	
Geneious	10	(http://www.geneious.com;	Kearse	et	al.,	2012).

To	 detect	 putative	 HGT	 regions	 in	 the	 plasmid	 pSCL4	 of	
S. clavuligerus	 ATCC	 27064,	 we	 used	 the	 software	 Alien	 Hunter	
(Vernikos	&	Parkhill,	2006),	optimizing	predicted	boundaries	with	a	
change‐point	detection	2	state	2nd	order	HMM.

2.4 | AMP candidate annotation and post‐
translational modification prediction

Annotation	of	our	 candidates	as	AMPs	was	made	 through	 several	
web	servers	available	for	this	purpose.	To	estimate	the	accuracy	of	
the	AMP	prediction	methods,	we	selected	a	list	of	verified	AMPs	as	
positive	controls	and	housekeeping	genes	as	negative	controls	(see	
Supporting	 Information	Table	S1).	The	 list	of	positive	controls	was	
obtained	 from	 the	 Antimicrobial	 Peptide	 Database	 (APD)	 (http://
aps.unmc.edu/AP)	using	four	arthropod	peptides	of	each	AMP	fam‐
ily	 with	 structural	 information	 (α‐helices,	 β‐sheets,	 αβ	 structures,	
and	 non‐αβ	 structures)	 and	 four	without	 an	 available	 structure	 in	
the	database.	We	used	 these	data	 to	 calculate	 the	 sensitivity	 and	
specificity	of	each	AMP	predictor	web	server.	In	total,	we	evaluated	
seven	AMP	predictors:	CAMP3	 (Waghu,	Barai,	Gurung,	&	 Idicula‐
Thomas,	 2016),	 AMPA	 (Torrent	 et	 al.,	 2012),	 ClassAMP	 (Joseph,	
Karnik,	Nilawe,	 Jayaraman,	&	 Idicula‐Thomas,	2012),	AntiBP	 (Lata,	
Sharma,	&	Raghava,	2007),	MLAMP	(Lin	&	Xu,	2016),	AMP	Scanner	
Vr.2	(Veltri,	Kamath,	&	Shehu,	2018),	and	ADP3	(Wang,	Li,	&	Wang,	
2016).	We	used	the	servers	with	the	highest	sensibility	and	specific‐
ity	to	predict	our	candidates	as	AMPs.	The	signal	peptide	prediction	
was	performed	with	SignalP4.1	(Petersen,	Brunak,	Heijne,	&	Nielsen,	
2011).

We	used	the	web	server	PROSPER	(https://prosper.erc.monash.
edu.au/)	 to	 predict	 the	 post‐translational	 modifications	 for	 our	
candidates	 to	 generate	 peptides	 from	 proteins.	 This	 tool	 predicts	
the	 cleavage	 sites	 for	 different	 proteases	 detectable	 in	 the	 query	
sequence.	 Additionally,	 to	 explore	 the	 serine	 protease	 machin‐
ery	of	S. clavuligerus,	we	predicted	 and	 classified	 these	 sequences	
with	 BLASTp	 searches	 against	 the	MERPOPS	 database	 (Rawlings,	
Barrett,	&	Bateman,	2012).

3  | RESULTS AND DISCUSSION

3.1 | Interdomain HGT candidates in Streptomyces 
clavuligerus ATCC 27064

We	 applied	 a	 pipeline	 adapted	 from	 Armijos‐Jaramillo	 et	 al.	
(2015)	 and	 Armijos‐Jaramillo,	 Santander‐Gordón,	 Soria,	 Pazmiño‐
Betancourth,	 and	 Echeverría	 (2017)	 to	 detect	 interdomain	 HGT	
events	 in	 the	 proteome	 of	 the	 S. clavuligerus	 strain	 ATCC	 27064.	
Because	of	this	search,	we	found	a	hypothetical	protein	(GenBank:	
EFG03676)	highly	similar	to	antimicrobial	peptides	(AMPs)	of	arthro‐
pods	 (60%	 identical	 to	 the	most	 similar	 protein),	 particularly	 from	
the	order	Hymenoptera	and	mostly	from	the	suborder	Apocrita.	We	

found	this	protein	only	in	the	S. clavuligerus	strain	ATCC	27064,	and	
no	other	homolog	sequences	were	detected	in	other	S. clavuligerus 
strains	or	bacterial	species.

We	found	three	paralogs	to	EFG03676	in	the	S. clavuligerus	ATCC	
27064	 proteome:	 EDY50506,	 EFG03588,	 and	 EDY49959.	 These	
sequences	are	97.9%	identical	at	the	amino	acid	level,	and	all	were	
predicted	with	a	signal	peptide.	From	the	NCBI	databases,	we	found	
that	the	codifying	genes	of	EDY50506	and	EDY49959	are	located	in	
the	bacterial	chromosome,	whereas	EFG03676	and	EFG03588	are	
located	in	the	pSCL4	megaplasmid.	Nevertheless,	the	similarity	be‐
tween	sequences	led	us	to	analyze	the	genomic	regions	that	encode	
the	candidate	proteins.	Thus,	we	used	the	DS570654	contig	for	the	
EDY50506	codifying	region	and	DS570647	contig	for	the	EDY49959	
codifying	region,	both	part	of	the	BioProject	PRJNA28551	(https://
www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA28551).	 At	 the	
same	time,	we	used	the	pSCL4	plasmid	contig	CM000914	to	detect	
codifying	 regions	 of	 EFG03676	 and	 EFG03588	 proteins.	 The	 se‐
quence	alignment	demonstrated	 that	 the	genes	of	DS570654	and	
DS570647	 originally	 annotated	 as	 part	 of	 the	 S. clavuligerus chro‐
mosome	are	identical	to	two	different	pSCL4	plasmid	regions	(contig	
CM000914,	BioProject	PRJNA42475,	Medema	et	al.,	2010).	Thus,	
we	 determined	 that	 there	 are	 only	 two	 copies	 of	 Hymenoptera	
AMP‐like	 genes	 in	 the	 S. clavuligerus	 ATCC	 27064	 genome,	 and	
both	are	located	in	the	megaplasmid	pSCL4.	There	is	no	evidence	of	
the	presence	of	these	genes	in	the	chromosome	contigs	of	the	se‐
quencing	projects	PRJNA19249	and	PRJNA42475.	Additionally,	the	
alignment	 between	 pSCL4	 plasmid	 contigs	 CM000914	 (BioPoject	
PRJNA42475)	and	CM001019	(BioProject	PRJNA19249,	Song	et	al.,	
2010)	 showed	 that	 the	 regions	 containing	Hymenoptera	AMP‐like	
genes	are	 identical.	The	current	evidence	showed	that	pSCL4	was	
originated	from	the	excision	of	a	S. clavuligerus	chromosome	section	
(Álvarez‐Álvarez,	Martínez‐Burgo,	Rodríguez‐García,	&	Liras,	2017).	
Thus,	 it	could	be	that	 the	original	copy	of	 the	gene	 is	 in	 the	chro‐
mosome	and	is	then	excised	to	the	plasmid.	An	alternative	scenario	
is	 the	appearance	of	one	copy	 in	 the	pSCL4	megaplasmid	without	
trespassing	to	the	chromosome.	In	any	case,	the	similarity	between	
these	two	paralogs	suggests	a	recent	duplication	event.

The	presence	of	Hymenoptera	AMP‐like	proteins	in	three	differ‐
ent	sequencing	projects	of	S. clavuligerus	ATCC	27064	(BioProjects	
PRJNA28551,	 PRJNA42475	 and	 PRJNA19249)	 demonstrates	 that	
those	 sequences	 are	 not	 artifacts.	 The	 lack	 of	 EFG03588	 homo‐
logs	in	bacteria	and	their	similarity	to	Hymenoptera	AMPs	strongly	
suggests	horizontal	gene	transfer	(HGT)	as	the	origin	of	these	mol‐
ecules	 in	S. clavuligerus.	 The	 alternative	 hypothesis	 (vertical	 trans‐
ference)	 implies	 the	 loss	 of	 these	 Hymenoptera	 AMP‐like	 genes	
in	 all	 bacterial	 species	 except	S. clavuligerus	ATCC	27064,	 but	 this	
explanation	 is	 less	 likely.	 Additionally,	 regarding	 Hymenoptera	
AMPs,	we	 found	 a	 sequence	 of	 the	 common	 carp	Cyprinus carpio 
(XP_018951382)	within	the	homologs	of	EFG03676‐EFG03588.	We	
tracked	XP_018951382	 in	 the	 scaffold	where	 their	 codifying	gene	
is	 located	 and	 found	 no	 evidence	 of	HGT	 in	 the	 adjacent	 regions	
(data	not	shown).	The	origin	of	 the	arthropod	AMP‐like	protein	of	
Cyprinus carpio	is	not	within	the	scope	of	this	study,	but	we	suggest	

http://www.geneious.com
http://aps.unmc.edu/AP
http://aps.unmc.edu/AP
https://prosper.erc.monash.edu.au/
https://prosper.erc.monash.edu.au/
info:ddbj-embl-genbank/EFG03676
https://www.ncbi.nlm.nih.gov/bioproject/?term
https://www.ncbi.nlm.nih.gov/bioproject/?term
info:ddbj-embl-genbank/XP_018951382
info:ddbj-embl-genbank/XP_018951382
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that	 it	could	be	the	result	of	contamination	during	the	sequencing	
process	or	a	very	recent	case	of	HGT.	This	suggestion	 is	based	on	
the	discovery	of	a	99.2%	identity	between	C. carpio	and	the	red	har‐
vester	ant	Pogonomyrmex barbatus	proteins,	and	there	is	no	evidence	
of	homology	with	Chordata	species.	The	phylogenetic	relationship	
of	EFG03676	with	its	paralogs	and	animal	xenologs	can	be	observed	
in	Figure	1.	The	topology	observed	in	this	tree	strongly	suggests	the	
direction	of	the	transference	from	Hymenoptera	to	S. clavuligerus or 
at	least	this	is	the	last	bacterial	descendent	(discovered	so	far)	that	
maintains	a	copy	of	that	gene	in	its	lineage.

Despite	 the	 fact	 that	 the	 origin	 of	 HGT	 events	 cannot	 be	
determined	 with	 certainty,	 several	 reports	 conclude	 that	 close	
ecological	interactions	increase	the	chances	of	lateral	gene	trans‐
missions	 (Degnan,	2014;	Venner	et	al.,	2017;	Wang	&	Liu,	2016).	

In	 that	 sense,	 the	 interaction	 between	 the	 Streptomyces	 species	
and	Hymenoptera	has	been	constantly	reported.	That	is	the	case	
for	 the	 fungus‐growing	 ants,	 which	 use	 antibiotics	 produced	 by	
Streptomyces	 bacteria	 to	protect	 their	 cultivations	 (Currie,	Scott,	
Summerbell,	 &	 Malloch,	 1999).	 From	 there,	 other	 protective	
uses	of	Streptomyces	 antibiotics	 have	been	 reported	 in	 different	
Hymenoptera	 species	 (de	 Souza	 et	 al.,	 2013;	 Engl	 et	 al.,	 2018;	
Kaltenpoth,	 Yildirim,	 Gürbüz,	 Herzner,	 &	 Strohm,	 2012;	 Kroiss	
et	 al.,	 2010;	 Van	 Arnam,	 Currie,	 &	 Clardy,	 2018).	 Particularly,	
S. clavuligerus	 has	 not	 been	 observed	 in	 one	 of	 these	 interac‐
tions;	 however,	 several	 unidentified	 Streptomyces	 species	 were	
reported	 by	 Haeder,	Wirth,	 Herz,	 and	 Spiteller	 (2009)	 as	 being	
associated	with	 leaf‐cutting	 ants.	 Some	 of	 them	were	 identified	
as	similar	to	S. griseus,	a	species	related	to	S. clavuligerus,	which	is	

F I G U R E  1  Phylogenetic	tree	of	Streptomyces clavuligerus	ATCC	27064	Hymenoptera	antimicrobial	peptide‐like	proteins	and	their	
homologs.	Proteins	from	bacteria	are	represented	in	red,	the	sequence	from	Hymenoptera	insects	are	colored	in	black,	and	blue	highlights	
the Cyprinus carpio	(Chordata)	sequence.	IDs	of	sequence	and	their	taxonomy	can	be	observed	in	terminal	nodes.	The	values	of	internal	
nodes	are	the	nonparametric	bootstrap	percentage
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in	agreement	with	Sembiring	(2009).	All	these	arguments	lead	us	
to	think	that	a	close	symbiotic	relationship	between	S. clavuligerus 
and	Hymenoptera	could	lead	the	transference	of	AMP‐like	gene.

3.2 | Expression evidence of the HGT candidates

We	mapped	RNAseq	data	 from	S. clavuligerus	ATCC	27064	 to	 the	
genomic	scaffold	DS570654	(BioProject	PRJNA28551),	from	42,968	
to	43,734.	This	region	is	the	same	in	the	three	sequencing	projects	
(PRJNA28551,	PRJNA42475,	and	PRJNA19249)	and	encodes	one	of	
the	two	copies	of	Hymenoptera	AMP‐like	proteins	(EFG03588).	We	
observed	a	clear	expression	signal	along	this	region	(Figure	2).	Using	
RNAseq	data	 from	S. clavuligerus F613‐1,	we	did	not	map	readings	
in	the	region	between	42,968	and	43,734.	This	result	 is	congruent	
with	the	absence	of	EFG03588	orthologs	in	bacteria,	including	other	
S. clavuligerus strains.	 Additionally,	 the	 RNAseq	 data	 demonstrate	
that	the	codifying	gene	of	EFG03588	is	expressed	under	in vitro	cul‐
ture	conditions.

3.3 | Inference of HGT recentness

Lawrence	and	Ochman	(1997)	proposed	the	idea	that	foreign	genes	
undergo	amelioration	in	order	to	adapt	their	sequence	to	the	host	
genome.	This	proposition	suggests	that	 laterally	transferred	genes	
could	be	differentiated	from	indigenous	ones	by	several	specific	fea‐
tures	 of	 the	 donor	 and	 receptor	 genomes.	However,	 by	 the	 same	
effect	 of	 amelioration,	 only	 “recently”	 transferred	 genes	 could	 be	
identified	 by	 this	 approximation	 because	 transferred	 genes	 over	
sufficient	 time	 (“old”	 transferred	 genes)	 evolve	 to	 imitate	 the	 re‐
ceptor	genomic	features.	Considering	this	argument,	we	predicted	

unusual	regions	in	the	pSCL4	plasmid	genome	(contig	CM001019).	
We	performed	this	task	through	interpolated	variable	order	motifs,	
a	technique	implemented	in	the	software	Alien	Hunter	(Vernikos	&	
Parkhill,	2006).	This	program	located	six	potentially	foreign	regions	
in	pSCL4:	1–7,500,	19,165–26,714,	46,125–62,763,	73,381–80,082,	
102,991–113,397,	and	134,187–144,263	(these	positions	are	relative	
to	CM001019).	The	codifying	gene	of	EFG03588	 is	 located	 in	 the	
region	108,662–109,105	and	that	of	EFG03676	is	located	in	the	re‐
gion	196,642–197,085.	Thus,	only	the	codifying	gene	of	EFG03676	
is	located	inside	an	Alien	Hunter	HGT	predicted	region.	EFG03676	
and	EFG03588	are	98%	identical;	thus,	it	is	improbable	that	the	dif‐
ference	in	the	predicted	regions	was	produced	by	these	sequences.

Following	 the	 idea	 of	 amelioration	 of	 foreign	 genes,	 the	
Hymenoptera	 AMP‐like	 sequences	 should	 have	 sufficient	 time	 to	
adapt	 to	 the	pSCL4	genome,	 but	 there	 are	 several	 other	 explana‐
tions	for	this	observation.	In	contrast	to	the	amelioration	hypothesis,	
Medrano‐Soto,	Moreno‐Hagelsieb,	Vinuesa,	Christen,	and	Collado‐
Vides	 (2004)	demonstrated	 that	 certain	 transferred	genes	 require	
a	level	of	codon	usage	compatibility	between	the	transferred	gene	
and	receptor	genome	to	survive	over	time.	Additionally,	certain	in‐
digenous	 regions	 in	 the	 genomes	possess	 distinctive	 features	 (GC	
content	or	codon	bias)	that	can	be	confused	with	HGT	regions,	such	
as	genes	with	translational	robustness	(Drummond,	Bloom,	Adami,	
Wilke,	&	Arnold,	 2005).	 Considering	 these	 arguments,	 the	 lack	 of	
HGT	signatures	in	the	codifying	regions	of	AMP‐like	proteins	(partic‐
ularly	EFG03588)	might	been	produced	by	an	amelioration	process,	
codon	usage	compatibility	between	donor	and	receptor	or	the	exis‐
tence	of	genomic	regions	in	pSCL4	with	certain	features	that	cover	
up	the	real	HGT	regions.

The	phylogenetic	 distribution	of	 the	S. clavuligerus	AMP‐like	
homologs	 (Figure	 1)	 suggests	 that	 the	 transfer	 should	 occur	

F I G U R E  2  Mapping	of	the	scaffold	DS570654	(region	from	42,968	to	43,734)	of	Streptomyces clavuligerus	ATCC	27064	using	RNAseq	
data	(GSE104738).	In	the	upper	panel,	a	graphical	representation	of	the	coverage	is	observed.	In	the	lower	panel,	the	relative	position	of	the	
mapping	readings	to	the	scaffold	region	is	observed
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before	 the	 appearance	 of	 Apocrita	 (Hymenoptera	 suborder).	 In	
agreement	with	the	TimeTree	database	(Kumar,	Stecher,	Suleski,	
&	 Hedges,	 2017),	 this	 event	 occurred	 between	 227	 and	 254	
million	 years	 ago.	 The	 correlation	 of	 this	 time	 range	 with	 HGT	
occurrence	 should	 be	 considered	with	 precaution	 because	 it	 is	
based	 upon	 the	 impossibility	 of	 associating	 S. clavuligerus pro‐
teins	with	 a	 particular	Apocrita	 clade.	When	more	Apocrita	 se‐
quences	become	available,	 a	more	precise	determination	of	 the	
time	of	lateral	transfer	can	be	achieved.	Additionally,	it	is	possible	
to	identify	the	specific	Apocrita	species	that	underwent	transfer.	
In	 this	scenario,	 the	estimated	time	of	 the	transfer	could	be	os‐
tensibly	lower.

3.4 | Size estimation of the HGT region

We	 performed	 alignment	 within	 the	 codifying	 sections	 of	
Hymenoptera	 AMP‐like	 paralogs	 (EFG03676	 and	 EFG03588)	 and	
their	neighbor	genes	in	the	pSCL4	genome	(Figure	3a).	In	this	align‐
ment,	we	identified	a	region	of	736	bp	with	97.8%	identity	that	con‐
tains	the	coding	genes	of	EFG03676	and	EFG03588,	the	last	section	
of	the	upstream	coding	genes	of	the	hypothetical	proteins	EFG03677	

and	EFG03589	and	part	 of	 the	 intergenic	 section	with	 the	down‐
stream	genes	that	codify	proteins	EFG03675	and	EFG03587.	Thus,	
we	propose	that	the	entire	section	of	736	bp	was	duplicated	inside	
the	pSCL4	plasmid.

To	explore	the	size	of	the	HGT	event	in	the	current	S. clavuligerus 
genome,	we	performed	a	BLASTn	search	using	the	736‐bp	section	
annotated	 as	 duplicated	 as	 a	 query.	We	 found	 that	 only	 a	 region	
of	293	nucleotides	has	sufficient	similarity	to	retrieve	results	from	
Hymenoptera	 genome	 sequences	 (this	 region	 excludes	 the	 signal	
peptide)	(Figure	3b).	In	addition,	we	performed	BLASTp	searches	of	
the	contiguous	proteins	of	AMP‐like	sequences	 (data	not	 shown).	
The	 results	 for	 EFG03676	 and	 EFG03588	 (left	 contiguous	 se‐
quences)	 showed	 these	 proteins	 had	 a	 vertical	 transmission	 phy‐
letic	pattern	 that	was	highly	 similar	 to	 that	of	other	Streptomyces 
proteins.	 By	 contrast,	 the	 BLAST	 results	 of	 EFG03676	 and	
EFG03588	 proteins	 (right	 contiguous	 sequences)	 showed	 similar‐
ity	 to	 their	own	or	partial	 sequences	of	S. clavuligerus.	This	 result	
shows	a	misannotation	or	the	possibility	that	these	proteins	can	be	
unique	to	S. clavuligerus.	 In	any	case,	the	contiguous	sequences	to	
Hymenoptera	AMP‐like	proteins	showed	no	HGT	signal,	at	least	in	
the	current	annotation	state.

F I G U R E  3   (a)	Schematic	view	of	the	alignment	between	CM00914	sections	that	contain	the	coding	regions	of	EFG03676–EFG03588	
paralogs	and	their	neighbor	genes.	The	section	labeled	“Duplicated	region”	shares	97.8%	identity.	(b)	Query	centric	view	of	the	BLASTn	
performed	on	the	duplicated	region	observed	in	(a).	BLAST	hits	with	NCBI	codes	are	shown	in	the	left	column	with	the	higher	taxonomic	level.	
The	region	with	metazoan	hits	was	annotated	as	the	putative	HGT	region.	The	percentage	of	identity	is	proportional	to	the	color	intensity	(with	
black	denoting	more	likeness	and	white,	less).	The	genomic	annotations	are	labeled	over	and	under	the	alignment	in	yellow	or	gray
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3.5 | Antimicrobial peptide prediction

To	explore	whether	 the	HGT	candidates	maintain	 the	same	anno‐
tation	of	their	xenologs,	we	used	several	AMP	prediction	software	
platforms	 (see	Section	2).	 First,	we	established	 the	 sensibility	 and	
specificity	of	each	predictor	 (Supporting	 Information	Table	S1)	be‐
cause	we	observed	heterogeneity	in	the	results	obtained	from	pre‐
liminary	 analysis.	Next,	we	 submitted	 the	 candidate	 sequences	 to	
the	 predictors	 with	 the	 highest	 sensitivity	 and	 specificity	 values	
(ADP3,	AMPA,	MLAMP,	and	AMP	Scanner	Vr.2).

ADP3	predicted	the	entire	EFG03588	and	EFG03676	sequences	
as	AMPs.	 Its	 output	 provides	 estimations	 of	 physicochemical	 pa‐
rameters	and	sequence	structure.	 In	the	case	of	HGT	candidates,	
the	formation	of	alpha	helices	and	hydrophobic	surfaces	was	pre‐
dicted,	so	they	may	interact	with	membranes	and	function	as	AMPs.	
AMPA	 predicted	 the	 peptide	 TIRFKSQRGHGI	 (from	 126	 to	 137)	
of	the	sequence	EFG03676	as	an	AMP;	meanwhile,	 the	sequence	
EFG03588	was	not	predicted	as	an	AMP.	Both	sequences	differ	in	
position	134	with	G	 instead	of	S.	Using	the	regions	between	126	
and	137	of	the	sequences	EFG03588	and	EFG03676,	the	MLAMP	
program	predicted	these	peptides	as	AMPs	with	a	probability	of	0.8	
and	0.9,	respectively,	and	as	antibacterial	AMPs	with	probabilities	
higher	than	0.8	in	both	cases.	AMP	Scanner	Vr.2	predicted	that	nei‐
ther	the	entire	sequence	nor	the	fragments	are	AMPs.

Despite	 the	 increasing	 number	 of	 AMP	 predictors	 (Liu,	 Fan,	
Sun,	Lao,	&	Zheng,	2017;	Porto,	Pires,	&	Franco,	2017)	and	various	
approximations	used	 for	 this	 task,	 the	diversity	of	AMPs	makes	 it	
difficult	 to	 use	 them	 as	 an	 accurate	 prediction	 of	 these	 types	 of	
molecules.	Considering	this	 limitation,	the	prediction	of	our	candi‐
dates	using	3	of	the	4	most	sensible	programs	evaluated	in	this	study	
makes	us	confident	of	the	veracity	of	the	annotation.

3.6 | Post‐translational modification of 
AMP candidates

Given	 the	 predictions	 of	AMPA	and	MLAMP	predictors,	we	 fol‐
lowed	the	possibility	that	our	candidates	were	encrypted.	These	
peptides	need	post‐translational	processing	from	a	mature	protein	
in	 order	 to	 be	 functional	 (Brand	 et	 al.,	 2012).	 There	 is	 evidence	
that	many	AMPs	originate	 from	precursor	proteins	 that	undergo	
post‐translational	modifications,	 so	 these	sequences	have	 to	un‐
dergo	 cleavage	 or	 other	modifications	 in	 order	 to	 be	 functional	
(Zhang	&	Gallo,	2016).	Thus,	the	APD	database	(http://aps.unmc.
edu/AP/)	has	a	collection	of	24	different	post‐translational	modi‐
fications	that	are	common	among	AMPs	(Wang	et	al.,	2016).	This	
process	has	been	well	 characterized	 in	neuroendocrine	peptides	
from	vertebrates	and	invertebrates.	These	peptides	are	processed	
by	 the	cleavage	of	different	 types	of	 convertases,	 such	as	 furin,	
PC1/3,	PC2,	PC4,	PACE4,	and	PC5/6	(Veenstra,	2000).	These	en‐
zymes	belong	 to	 the	 family	of	 serine	proteases,	which	have	also	
been	implicated	in	the	post‐translational	modification	of	enzymes,	
hormones,	 signaling	 molecules,	 and	 growth	 factors	 (Małuch,	
Walewska,	Sikorska,	&	Prahl,	2016).

We	performed	the	prediction	of	the	cleavage	sites	of	our	can‐
didate	 proteins	 using	 the	 web	 server	 PROSPER,	 and	 we	 found	
that	 they	 could	 be	 cut	 in	 different	 positions	 by	 several	 prote‐
ases.	 Remarkably,	 the	 server	 predicted	 cutting	 sites	 (by	 serine	
proteases)	near	to	the	AMP	prediction	of	the	AMPA	and	MLAMP	
programs.	Thus,	the	PROSPER	results	suggest	that	an	elastase‐2	
makes	 cuts	 in	 the	 sequence	 EFG03588	 at	 positions	 25,	 96,	 99,	
127,	140,	 and	141	and	 in	EFG03676	at	positions	25,	33,	96,	99,	
127,	140,	and	141.	The	cleavage	of	the	residues	127	and	141	in‐
cludes	the	peptide	predicted	with	AMPA	and	MLAMP.	The	resul‐
tant	peptide	of	 the	 cleavage	 in	 these	 two	positions	 (RFKSQRG/
SHGIDFV)	was	also	predicted	as	AMP	by	the	AMPA	and	MLAMP	
programs.

Elastase‐2	 belongs	 to	 the	 serine	 proteases	 family,	 which	 are	
widely	 extended	 in	 all	 kingdoms	 of	 life	 (Tripathi	 &	 Sowdhamini,	
2008),	 including	 S. clavuligerus,	 which	 has	 thirteen	 of	 these	 pro‐
teins	annotated	in	its	proteome.	We	performed	BLASTp	searches	
of	 S. clavuligerus serine	 proteases	 in	 the	 MEROPS	 database	
(https://www.ebi.ac.uk/merops/index.shtml)	and	found	eight	ser‐
ine	proteases	of	the	S1	family,	four	of	the	S8	family	and	one	of	the	
M6	family.	Elastase‐2	belongs	to	the	S1A	subfamily,	and	we	found	
three	of	these	sequences	in	the	S. clavuligerus	proteome.	The	pres‐
ence	of	these	enzymes	suggests	that	S. clavuligerus	possesses	the	
machinery	to	cleave	EFG03676	and	EFG03588	proteins.	What	 is	
more,	the	signal	peptide	of	these	proteins	could	be	used	to	trans‐
locate	the	sequence	to	some	transporter	(like	an	ABC	transporter)	
to	process	 the	protein	 and	 then	 secrete	 the	peptide	outside	 the	
cell.	 A	 similar	 mechanism	 has	 been	 observed	 in	 class	 IIa	 bacte‐
riocins	 (Drider,	 Fimland,	 Héchard,	 McMullen,	 &	 Prévost,	 2006;	
Perez,	Zendo,	&	Sonomoto,	2014).	 In	this	scenario,	Hymenoptera	
AMP‐like	 sequences	 could	 be	 translocated,	 guided	 by	 the	 signal	
peptide,	 and	 then	 be	 submitted	 to	 post‐translational	 proteolytic	
cleavage	 using	 serine	 proteases	 (and	 likely	many	 other	 enzymes	
and	complexes)	before	being	secreted	outside	the	cell	 (Figure	4).	
With	this	scenario,	we	highlight	the	machinery	available	in	bacte‐
ria	 to	 complete	 the	 processing	 of	 AMPs	 even	 in	 sequences	 that	
arise	 from	 distant	 organisms.	 In	 fact,	 several	 approaches	 have	
been	 reported	 to	 process	 and	 secrete	 polypeptides	 from	 longer	
proteins	(Dores,	Lecaudé,	Bauer,	&	Danielson,	2002;	Fukudome	&	
Yoshikawa,	1992;	Ivanov,	Karelin,	Philippova,	Nazimov,	&	Pletnev,	
1997;	Lewis	&	Stern,	1983;	Meisel	&	Bockelmann,	1999;	Vanhoye,	
Bruston,	Nicolas,	&	Amiche,	2003;	Zhao,	Garreau,	Sannier,	&	Piot,	
1997),	and	only	experimental	procedures	can	unveil	the	real	pro‐
cessing	of	our	candidates.

Although	 some	other	 peptides	 (especially	with	 cyclic	 confor‐
mation)	with	antimicrobial	 and/or	antitumoral	 effects	have	been	
reported	in	the	Streptomyces	genus	(Shetty,	Buddana,	Tatipamula,	
Naga,	&	Ahmad,	2014;	Um	et	al.,	2013;	Zhou	et	al.,	2014),	this	 is	
the	first	study	to	detect	an	AMP	that	is	laterally	transferred	in	this	
group	of	organisms.	More	than	2,500	natural	or	encrypted	AMPs	
have	been	described	previously	(Zhang	&	Gallo,	2016).	However,	
some	of	those	have	low	antimicrobial	activity	or	an	unknown	func‐
tion.	Therefore,	the	stable	HGT	genes	were	demonstrated	to	play	

http://aps.unmc.edu/AP/
http://aps.unmc.edu/AP/
https://www.ebi.ac.uk/merops/index.shtml
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relevant	 roles	 in	 receptor	 organisms	 (Belbahri,	 Calmin,	 Mauch,	
&	 Andersson,	 2008;	 Friesen	 et	 al.,	 2006;	 Slot	 &	 Rokas,	 2010;	
Tiburcio	 et	 al.,	 2010;	 Wenzl,	 Wong,	 Kwang‐won,	 &	 Jefferson,	
2005).	 The	 rationale	 behind	 this	 observation	 suggests	 that	 the	
increase	 in	 the	 fitness	generated	by	the	HGT	gene	 in	 the	recep‐
tor	 organism	 compensates	 or	 overtakes	 the	 negative	 selection	
that	 a	 gene	of	 this	 type	would	undergo,	 because	 a	 foreign	gene	
(especially	 in	the	 interdomain	HGT)	should	overcome	the	 incom‐
patibility	 of	 promoters	 and	 an	 alternative	 genetic	 code,	without	
mentioning	 the	 cost	 generated	 by	 the	 synthesis	 and	 duplication	
of	 new	 genetic	material,	 especially	 in	 prokaryotic	 genomes	 that	
tend	to	be	highly	efficient	(Kuo	&	Ochman,	2009;	Mira,	Ochman,	
&	Moran,	 2001).	 Thus,	 the	 presence	 of	 Hymenoptera	 AMP‐like	
genes	in	S. clavuligerus	ATCC	27064	should	play	an	important	role	
in	 this	 strain.	 This	 assertion	 is	 supported	 by	 the	 estimated	 time	
in	which	the	Hymenoptera	 transferred	genes	are	retained	 in	 the	
S. clavuligerus	 genome.	 Additionally,	 the	 presence	 of	 two	 copies	
in	 the	 genome	 suggests	 an	 expansion	 of	 the	 family,	 perhaps	 to	
produce	 dosage	 duplication.	 These	 lines	 of	 evidence	 lead	 us	 to	
propose	that	Hymenoptera	AMP‐like	proteins	could	be	useful	an‐
timicrobial	molecules	for	S. clavuligerus	ATCC	27064	with	several	
biotechnological	applications	that	can	be	explored.
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